Hello, Welcome to LEAPChem.com

Find Imidazole (288-32-4) on LEAPChem.com Now!

Nov. 2018/6/14 14:43:17 By LEAP Chem


At LEAPChem - Pharmaceutical Chemicals, we proudly distribute the materials that are required for the wide range of our customers’ production processes. We understand that each production process is unique, which is why we provide custom services and chemical knowledge tailored to each customer specifically. With LEAPChem, you can look forward to receiving the operational benefits of working with an international company paired with the customer service and reliable follow up of a small business. LEAPChem Highlights Imidazole today!

 

Basic Information of Imidazole

Chemical Name: Imidazole

Cas No.: 288-32-4

Molecular Formula: C3H4N2

Chemical Structure:

 288-32-4.png

 

Imidazole is an organic compound with the formula C3N2H4. It is a white or colourless solid that is soluble in water, producing a mildly alkaline solution. In chemistry, it is an aromatic heterocycle, classified as a diazole, and having non-adjacent nitrogen atoms.

Many natural products, especially alkaloids, contain the imidazole ring. These imidazoles share the 1,3-C3N2 ring but feature varied substituents. This ring system is present in important biological building blocks, such as histidine and the related hormone histamine. Many drugs contain an imidazole ring, such as certain antifungal drugs, the nitroimidazole series of antibiotics, and the sedative midazolam.

Imidazole is a planar 5-membered ring. It exists in two equivalent tautomeric forms, because the positive charge can be located on either of the two nitrogen atoms. Imidazole is a highly polar compound, as evidenced by its electric dipole moment of 3.67 D.[9] It is highly soluble in water. The compound is classified as aromatic due to the presence of a sextet of π-electrons, consisting of a pair of electrons from the protonated nitrogen atom and one from each of the remaining four atoms of the ring.

Imidazole is amphoteric. That is, it can function as both an acid and as a base. As an acid, the pKa of imidazole is 14.5, making it less acidic than carboxylic acids, phenols, and imides, but slightly more acidic than alcohols. The acidic proton is located on N-1. As a base, the pKa of the conjugate acid (cited as pKBH+ to avoid confusion between the two) is approximately 7, making imidazole approximately sixty times more basic than pyridine. The basic site is N3. Protonation gives the imidazolium cation, which is symmetrical.

Imidazole is incorporated into many important biological molecules. The most pervasive is the amino acid histidine, which has an imidazole side-chain. Histidine is present in many proteins and enzymes and plays a vital part in the structure and binding functions of hemoglobin. Imidazole-based histidine compounds play a very important role in intracellular buffering. Histidine can be decarboxylated to histamine, which is also a common biological compound. Histamine can cause urticaria (hives) when it is produced during allergic reaction.

The substituted imidazole derivatives are valuable in treatment of many systemic fungal infections. Imidazoles belong to the class of azole antifungals, which includes ketoconazole, miconazole, and clotrimazole.

For comparison, another group of azoles is the triazoles, which includes fluconazole, itraconazole, and voriconazole. The difference between the imidazoles and the triazoles involves the mechanism of inhibition of the cytochrome P450 enzyme. The N3 of the imidazole compound binds to the heme iron atom of ferric cytochrome P450, whereas the N4 of the triazoles bind to the heme group. The triazoles have been shown to have a higher specificity for the cytochrome P450 than imidazoles, thereby making them more potent than the imidazoles.

Imidazole has been used extensively as a corrosion inhibitor on certain transition metals, such as copper. Preventing copper corrosion is important, especially in aqueous systems, where the conductivity of the copper decreases due to corrosion. Imidazoles can also be used as organic structure directing agents to synthesize zeollites.

Many compounds of industrial and technological importance contain imidazole derivatives. The thermostable polybenzimidazole (PBI) contains imidazole fused to a benzene ring and linked to a benzene, and acts as a fire retardant. Imidazole can also be found in various compounds that are used for photography and electronics.

 

We offer various pack sizes and configurations to suit your needs, and our experienced staff stays with you every step of the way, from inquiry through delivery.
If you are interested in Imidazole, click here to send an inquiry!

Make LEAPChem your pharmaceutical chemicals long-term partner and contact us today!

 

References:

https://en.wikipedia.org/wiki/Imidazole

https://www.ncbi.nlm.nih.gov/pubmed/14683594

https://www.ncbi.nlm.nih.gov/pubmed/12932133

 

Related Articles

LEAPChem Highlights 2-Cyclohexen-1-one (930-68-7) Today!

Source Potassium tert-butanolate (865-47-4) from LEAPChem!

Find High Quality alpha-Arbutin (84380-01-8) from LEAPChem!